
Abstract- Predicting the onset of hypoglycaemia can avoid major
health complications in Type 1 insulin-dependent-diabetes-
mellitus (IDDM) patients. This paper describes the design of a
novel fuzzy neural network estimator algorithm (FNNE) for
predicting the glycaemia profile and onset of hypoglycaemia in
insulin-induced subjects, by modelling the changes in heart rate
and skin impedance parameters. Hypoglycaemia was induced
briefly in 12 volunteers (group A: 6 non-diabetic subjects and
group B: 6 Type 1 IDDM patients) using insulin infusion. Their
skin impedances, heart rates and actual blood glucose levels (BGL)
were monitored at regular intervals. The FNNE algorithm was
trained using all subjects from group A and validated/tested on the
remaining subjects from group B. The mean error of estimation of
BGL profile for the training data set (group A) was 0.107 (ρρρρ <
0.05) and for the validation/test data set (group B) was 0.139 (ρρρρ <
0.05). Furthermore, the FNNE algorithm was able to predict the
onset of hypoglycaemia episodes in group A and group B with a
mean error of 0.071 (ρρρρ < 0.03) and 0.176 (ρρρρ < 0.05) respectively.
Keywords -  Hypoglycaemia, heart rate, skin impedance

I. INTRODUCTION

For patients with Type 1 insulin-dependent-diabetes-
mellitus (IDDM), hypoglycaemia is a frequent and severe
complication [1]. Introduction of intensive therapy with
continuous subcutaneous insulin infusion pumps and frequent
daily injections has led to an increase in hypoglycaemia
episodes [2]. Past studies have shown that intensive therapy can
lower the glucose threshold for neurogenic warning symptoms,
which exposes IDDM patients to further risks associated with
severe hypoglycaemia [3].

The glycaemic levels within the human body reflect onto
the symptomatic changes of certain physiological parameters
[4-5]. The most profound physiological disturbances are caused
by the activation of the sympathetic nervous system, which
reflect through to the parameters such as sweating and
cardiovascular system response. Sweating is primarily due to
cholinergic sympathetic activity [6] and cardiovascular system
response is due to the increase in heart rate and stroke volume
[7].  As a result certain experiments have been undertaken to
analyse the correlation between the measured parameters and
blood glucose levels (BGL) within the body [8-9]. However, no
attempts have been made to estimate BGL profiles or the
severity of hypoglycaemia based on the changes in the
measured parameters.

This paper describes the design of a fuzzy neural network
estimator (FNNE) algorithm which is used for predicting
glycaemic profiles and hypoglycaemia episodes in insulin-
induced subjects. This FNNE algorithm only uses heart rates
and skin impedances as system inputs. It comprises of a parallel

fuzzy inference engine and a multi-layered neural network
system with trainable weight matrix for transforming these
measured physiological parameters into estimated blood
glucose levels.

II. METHODOLOGY

Twelve subjects, 6 non-diabetics (group A) and 6 Type 1
IDDM (group B) subjects aged 26 ± 3 years, volunteered for
this study after giving informed consent. The sample population
consisted of 6 males and 6 females. The study was approved by
the local Ethics Committee. All subjects were non-obese as
assessed by their height: 1.69 ± 0.08 m, weight: 68 ± 10 kg, and
body surface area of 1.74 ± 0.23 m2. The experiments were
conducted in morning periods at the Diabetes Centre, Prince of
Wales Hospital clinical research laboratory. All subjects were
required to fast from midnight.

Two sets of skin surface electrodes, which interfaced
directly to the measuring instrument, were attached to the
subject to measure the physiological parameters, heart rate and
skin impedance [10]. Intravenous Teflon cannulae were
inserted into a vein in each forearm and kept patent using a
saline drip. The cannula on the right forearm was used for
intravenous infusion of insulin (Actrapid, Novo Nordisk) set at
a rate of 40 mU/kg/hour.

Thirty minutes before commencing insulin infusion,
baseline measurements of BGL were collected at 15-min.
intervals. At the end of this 30-min. baseline phase, the insulin
infusion commenced at a flow rate of 10 ml/hr, marking the
beginning of the data-logging phase for a duration of 90 min.
During this phase, BGL was collected at 5-min. intervals while
the instrument logged at 1min intervals.

III. ALGORITHM DESIGN

A. Initial data processing

The measured physiological parameters (heart rate and skin
impedance) were first normalised to enhance the cross-
correlation of the algorithm and to counteract varying
environmental conditions which could affect the measurement
process. The processing unit then collated the measured heart
rate and skin impedance parameters (measured at 1 sample per
min.) with actual measured BGL data (measured at 1 sample
per 5 min.), using a weighted average method.

As a result, a generalised data matrix set sY  which consists
of heart rates shrX  skin impedances ssiX  and measured BGLs

s
act
BGLX  was formed:
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where n corresponds to the population size i.e. 20 for the sth
subject (s = 1,2…12).

B. Fuzzy neural network estimator (FNNE)

The FNNE algorithm is based on a parallel combination of
fuzzy inference mechanism (FIM) and a multi-layered neural
network (NN) architecture with trainable weight matrix to
transform the measured physiological parameters, shrX and

ssiX  into an estimated BGL profile, s
est
BGLX  for each subject (s

= 1,2…12). This FNNE algorithm benefits from the linguistic
rule modelling behaviour of the FIM and the trainable
characteristics of the multi-layered NN algorithm. Its
architecture is shown in Figure 1.

The core principle of the FNNE algorithm is based on the
first-order Sugeno fuzzy model [11-12] where the FIM is
compiled on a set of N fuzzy if-then rules. These rules are
mainly derived using a deterministic approach with medical
advice by experts in the field of diabetes study. The kth rule has
the following format:
Rule k: if 1jx is VH and 2jx is BN then ),( 213 jjk

est
j xxfx = (2)

where VH (Very High) and BN (Below Normal) are the
linguistic variables associated with the fuzzy subsets of 1jx ,

2jx , and 2211021 ),( jkjkkjjk xxxxf βββ ++=  is the resulting
first-order consequent polynomial function for calculating the
jth estimated BGL value, est

jx 3 (from s
est
BGLX data set).

The resulting FNNE algorithm produces (through the
training process of the first and second phase) a solution for all
N polynomial function coefficients ( 2,10 , kkk βββ , for k =
1,..,N), collated into a coefficient matrix Β , represented as:
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where the kth row [ ]210 kkkk ββββ =  is the coefficient

data set for the kth polynomial function ),( 21 jjk xxf .
Layer 1 consists of the fuzzification layer which maps the

jth (j= 1,2…n) normalised measured heart rate value 1jx , and

skin impedance value 2jx  within shrX , ssiX (s = 1,2,…12) into
corresponding new fuzzy sets [13].

Fuzzification
21, jj xx

AND operator
(product)

Normalisation

Neural network
layer

Neuro-fuzzy
consequence

est
jx 3

sth subject’s jth estimated BGL

sth subject’s jth input parameters

Output layer

3jx

est
jx 3

jth actual BGL value

(layer 1) (layer 2) (layer 3)

(layer 5)

(layer 6)

(layer 4)

Fig. 1: FNNE block diagram

Layer 2 performs the AND operation on all corresponding
linguistic variables (derived by fuzzification) associated with
each if-then rule. Layer 3 normalises each firing strength node
from layer 2, based on the sum of all rules (N rules).

The neural network layer (layer 4) performs the feed-

forward network process of the jth values 1jx  and 2jx ,

together with the actual jth BGL value 3jx  as feedback error.
Using this neural network structure, layer 4 uses all N estimated
polynomial function coefficients ( 2,10 , kkk βββ , for k = 1,..,N) to
produce N output neurons which will be processed by the
neuro-fuzzy consequence layer (layer 5). Layer 5 is the central
layer within the FNNE architecture. This layer performs the
neuro-fuzzy consequence operation where each output is the
product of the normalised firing strength (output from layer 3)
by the corresponding output neuron from the neural network
layer (layer 4). Finally, the output layer (layer 6) provides the
jth estimated BGL output, est

jx 3 , by summing the all neuro-fuzzy
consequence output nodes generated by layer 5.

Using the general delta-learning rule [14], during each qth
iteration, the coefficients within coeffΒ are updated in such a

manner to minimise the overall jth error 2
33 )(2/1 est

jjj xxE −= .
Using the steepest descent technique, these coefficients are
updated according to:

 jkj
q
k

q
k xE )(1 βηββ ∇−=+ (4)

where η  is a positive learning constant, )( kjE β∇ is the jth

error gradient vector and [ ]121 jjj xxx =  is the jth
observation within sY (s = 1,2,…6) (training using group A
only). At the end of each qth iteration, the validation data sets

shrX , ssiX and s
act
BGLX  (s = 7, 8) in group B are used to

determine the cycle error (estimated BGL est
jx 3 , with respect to
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the measured BGL 3jx ) and its rate of convergence. The
trained and optimised FNNE algorithm is applied to the
remaining subjects within group B (s = 9,10…12) with no
further training to provide formal testing.

IV. RESULTS

A. Physiological parameter responses

The BGL profiles of both groups A and B are shown in
Figure 2. In the baseline phase (-30 to 0 min interval), the
means BGLs and ± standard deviation (SD) for groups A and B
were 4.3 ± 0.4 mmol/l and 10.8 ± 1.4 mmol/l respectively. The
minimum BGL value reached by group A was 1.93 ± 0.4
mmol/l, while the minimum value reached by group B was 1.5
± 0.5 mmol/l within the time span of 60 minutes.
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Fig. 2: Measured physiological parameter profiles

The resting heart rates at baseline phase for group A and
group B had a mean of 62 ± 1 bpm (range 51 – 70 bpm) and 74
± 2 bpm (range 63 – 94 bpm) respectively. During the severe
hypoglycaemia phase, the heart rate for group A increased to a
mean of 73 ± 7 bpm (range 63 – 80 bpm, mean increase of 11
bpm). Similarly, the heart rate for group B increased to mean of
95 ± 15 bpm (range 76 – 113 bpm, mean increase of 21 bpm).

The skin impedances at baseline phase for group A and
group B had a mean of 400 ± 96 ohms (range 673 –172 ohms)
and 417 ± 22 ohms (range 185 – 695 ohms) respectively.
During severe hypoglycaemia episodes, the skin impedance for
group A decreased to a mean of 276 ± 135 ohms (range 102 –
449 ohms). Similarly, the skin impedance for group B
decreased to a mean of 306 ± 176 ohms (range 75 – 459 ohms).

B. FNNE algorithm response

The FNNE algorithm was trained using the data set of all
subjects from group A (s = 1,2…6). The validation  procedure
was determined using the data obtained in the first two group B
subjects (s = 7,8) and testing was conducted on the remaining
four group B subjects (s = 9,10…12).

Figure 3 represents the combined correlated BGL data sets
of all subjects in groups A and B (sample size n of 240). The
solid linear line represents the correlation of estimated versus
actual BGL data sets, and the two dashed lines represents the ±
5% deviation from this correlation. The BGL correlation of
group A and group B produced an overall 2R  of 0.983.
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Figure 3: Combined correlated BGL plots

All subjects from group A demonstrated high correlation of
estimated BGL (the mean multiple correlation coefficient, 2R =
0.986) with respect to actual BGL profile, ρ < 0.05 (mean
likelihood probability). The overall mean error of estimation ε
and a mean error of estimation for hypoglycaemia (BGL < 2.5
mmol/l) hypoε  for group A were 0.107 (ρ < 0.05) and 0.071 (ρ
< 0.03) respectively. The BGL estimation profiles of all
subjects from group B correlated within the statistical
confidence interval 2R = 0.979 (ρ < 0.05). The overall ε  and

hypoε  for group B were 0.139 (ρ < 0.05) and 0.176 (ρ < 0.05).
Table 1 summarises the overall performance of the FNNE

algorithm for both, group A and group B, including the multiple
correlation coefficient, the estimated BGL value at
hypoglycaemia and its time lead/ lag.

IV. DISCUSSION

This paper has introduced a novel fuzzy neural network
estimator (FNNE) algorithm for modelling the non-linear
correlation between measured physiological parameters and the
actual BGL profile. This algorithm is based on a set of first-
order estimation functions for estimating the BGL profiles and
consequently, detecting the onset of hypoglycaemia episodes.
These estimation functions were trained using controlled data
sets of non-diabetic subjects (group A), and validated/tested
using data sets obtained from Type 1 IDDM subjects (group B).
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TABLE I
FNNE ALGORITHM PERFORMANCE SUMMARY

Subject R2 ε BGL (hypo)
mmol/l hypoε hypot

(min)

1 0.980 0.128 2.73 0.092 + 5
2 0.989 0.096 2.31 0.076 - 3
3 0.990 0.094 2.63 0.052 + 1
4 0.992 0.091 2.54 0.016 + 1
5 0.987 0.098 2.52 0.001 + 1

Group A

6 0.979 0.137 2.94 0.176 + 4
7 0.983 0.127 2.89 0.156 - 10
8 0.988 0.112 2.78 0.113 + 12

9 0.985 0.122 2.77 0.108 N/A
10 0.974 0.159 3.14 0.256 - 12

11 0.976 0.146 2.97 0.188 + 13

Group B

12 0.971 0.165 2.88 0.152 + 6

Analysing the static behaviour of the measured
physiological parameters of all twelve subjects, a significant
correlation was observed with respect to the measured BGL
profile, ρ < 0.01. From the transition of normal glycaemic level
(BGL above 3.5 mmol/l) to hypoglycaemia phase (BGL below
2.5 mmol/l), the mean heart rate of group A and group B
increased by 11 and 21 bpm respectively. Similarly, the mean
skin impedance of group A and group B decreased by 124 and
111ohms respectively. However, the variance of the measured
physiological parameters and BGL values for group B were
significantly larger than group A. This effect is primarily due to
the irregular glucose counterregulatory present in Type 1
IDDM subjects system [1].

The FNNE was trained within 300 iterations of the training
data set based on the convergence rate of the validation data set
(subjects 7 and 8). The overall mean error of estimation ε  and
mean error of estimation of hypoglycaemia hypoε  for group A
were 0.107 (ρ < 0.05) and 0.071 (ρ < 0.03) respectively. The
trained first-order estimation functions obtained from group A
was validated and tested using group B data set. All group B
subjects demonstrated good correlation of BGL estimation
( 2R = 0.979), particularly below the 50-min. interval, ρ <
0.055. The overall ε  and hypoε  for group B were 0.139 (ρ <
0.05) and 0.176 (ρ < 0.05) respectively. The prediction time of
hypoglycaemia varied from subject to subject with a mean
prediction period of 9.7 ± 6.1 minutes of actual onset.

V. CONCLUSION

In order to improve the accuracy of the algorithm for
estimating the BGL profile, further experiments are
recommended, especially in the hypoglycaemia stage.
Changing the first-order estimation functions to higher order
functions (e.g. quadratic) may improve BGL estimation and
provide better fitting equations. The size of the coefficient
matrix will need to increase to accommodate higher-order
functions. Increasing the number of estimation functions can

improve the oscillation effects observed within group B. Other
methods for improving BGL estimation may include larger
training and validating sampling data set, adaptive training of
membership functions and use of Hopfield neural network
architecture to compensate for large time delays due to
autonomic system response.

By addressing these issues with on-going research, an
improved estimation procedure can be accomplished and
implemented for the non-invasive detection of severe
hypoglycaemia for patients with Type 1 diabetes.
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